Étiquette : Oasis

 

Israël-Palestine: faisons de l’eau une arme pour la Paix !

L'eau pour la paix

Sommaire:

1. Géographie

La mer Morte se trouve à moins 415 mètres en dessous du niveau de la mer.

Quatre pays se partagent le bassin du Jourdain, le Liban, la Syrie, la Jordanie et Israël, auxquels il faut ajouter les territoires palestiniens de Cisjordanie et de Gaza.

Logée dans le creux d’une dépression tectonique se situant sur la grande faille qui court depuis Aqaba jusqu’à la Turquie, la vallée du Jourdain est l’un des bassins de vie les plus bas au monde, puisqu’il se jette dans la mer Morte, à 421 mètres sous le niveau des océans.

Voir carte topographique interactive

De plus, il s’agit d’un bassin endoréique, c’est-à-dire d’un cours d’eau n’aboutissant ni à la mer ni à l’océan. Comme pour le bassin de la mer d’Aral en Asie centrale, ceci implique que toute eau puisée ou détournée en amont réduit le niveau de son réceptacle ultime, la mer Morte (voir plus bas) et pourrait même, éventuellement, la faire disparaître.

Vallée du Jourdain.

Tout en restant une artère fondamentale pour toute la région, le Jourdain est un fleuve présentant plusieurs inconvénients : son cours n’est pas navigable, son débit reste peu élevé et ses eaux, fortement salées, sont polluées.

Comme un des facteurs clés de l’équation (le nexus) « eau, énergie, nourriture », trois facteurs dont l’interdépendance est telle qu’on ne peut les traiter isolément, l’aménagement de la ressource en eau reste un enjeu capital et occupe une place primordiale pour tout avenir partagé entre Israël et ses voisins arabes.

2. Pluviométrie et ressources hydriques

Le Moyen-Orient forme une longue bande aride qui n’est interrompue qu’accidentellement par des zones où les précipitations sont abondantes (autour de 500-700 mm/an), par exemple les montagnes du Liban, de la Palestine, du Yémen.

Géographiquement, une bonne partie du Moyen-Orient est située au Sud de l’isohyète (ligne imaginaire reliant des points d’égales précipitations) indiquant les 300 mm/an. Cependant, les précipitations n’ont qu’un effet limité du fait de leur saisonnalité (octobre-février).

Par conséquent, le débit et les crues des cours d’eaux sont irréguliers au fil de l’année, en plus d’être irréguliers entre les années. Idem pour l’alimentation des nappes phréatiques.

Maintenant, en termes de ressources totales en eau par personne et par Etat, elles sont très inégalement réparties.

État par État, les ressources totales en eau sont très inégalement réparties dans la région :
La Turquie et l’Irak disposent de plus de 4 000 mètres cubes par personne et par an, et le Liban d’environ 3 000 m³/personne/an, ce qui est supérieur à la moyenne régionale (1 800 m³/personne/an).
La Syrie et l’Égypte ont environ 1 200 m³/personne/an, soit un tiers de moins.

D’autre part, certains pays se situent en dessous de la fourchette critique de 500 m³/an/habitant :
Israël et la Jordanie disposent de 300 m³/an/habitant, et les Territoires palestiniens (Cisjordanie-Gaza) de moins de 200 m³/an/habitant. Ils se trouvent dans ce que l’Organisation mondiale de la santé (OMS) appelle une situation de « stress hydrique ».

Le Moyen-Orient jouit d’une abondance d’eau à l’échelle régionale, mais compte de nombreuses zones en pénurie chronique, à l’échelle locale.

3. Hydrographie du bassin du Jourdain

A. Source

Long de 360 km de long, le fleuve Jourdain naît de l’eau qui descend des pentes du Jabal el-Cheikh (mont Hermon) au sud du Liban, sur la frontière avec la Syrie.

B. Affluents

Une fois passée la frontière israélienne, trois affluents rejoignent le Jourdain à environ 6 km en amont de l’ancien lac Houleh (aujourd’hui assaini) :

1. Le Hasbani, avec un débit de 140 millions de mètres cubes par an, prend sa source au Liban, qu’il parcourt sur 21 km. Son cours supérieur varie fortement en fonction des saisons, alors que son cours inférieur est plus régulier.

2. Long de 30 km, le Banias, actuellement placé sous le contrôle d’Israël, a un débit annuel proche de celui de l’Hasbani (140 MMC/an). Il prend sa source en Syrie sur les hauteurs du Golan, et s’étire en Israël sur environ 12 km avant de se jeter dans le Haut Jourdain.

3. Le Nahr Leddan (ou le Dan) se forme en Israël lorsque se rejoignent les eaux provenant en majorité des hauteurs du Golan. Bien que restreint, son cours reste stable et son débit annuel est supérieur à ceux des deux autres affluents du haut Jourdain, puisqu’il dépasse les 250 MMC/an.

C. Lac de Tibériade (Mer de Galilée, lac de Kinneret)

Le Jourdain parcourt ensuite 17 km de gorges étroites pour arriver au lac de Tibériade, où la salinité est forte, d’autant plus qu’on a détourné des cours d’eau douce qui s’y jetaient. Le lac de Tibériade reçoit cependant les eaux des multiples petits cours d’eau traversant les hauteurs du Golan.

D. La rivière Yarmouk

Le Jourdain rencontre alors la rivière Yarmouk (arrivant de Syrie), puis décrit des méandres sur 320 km (109 km à vol d’oiseau) avant d’atteindre la mer Morte. Ces 320 km sont occupés par une plaine humide (le zor humide), à la végétation subtropicale, dominée des deux côtés (cisjordanien et jordanien) par des terrasses sèches et ravinées.

4. Sources d’eau pour Israël

L’État hébreu dispose de quatre principales sources d’approvisionnement en eau.

A. Eaux de surface

Israël bénéficie des réserves en eau douce du lac de Tibériade en Galilée, au nord du pays. Traversée par le Jourdain, cette petite mer intérieure représente 25 % des besoins en eau d’Israël. Cette source d’eau a été sanctuarisée par son annexion dans les hauteurs du Golan et son occupation au Sud Liban.

B. Eaux souterraines

En plus des eaux de surface (rivières), le pays peut compter sur ses aquifères côtiers, de Haïfa à Ashkelon. Située entre Israël et la Cisjordanie occupée, la principale nappe phréatique, l’aquifère de montagne Yarkon-Taninim, a une capacité de 350 MMC/an. Dans le nord-est et l’est de la Cisjordanie se trouvent deux autres nappes, d’une capacité respective de 140 et 120 MMC/an.

C. Dessalement de l’eau de mer

Cinq usines de dessalement construites le long du littoral israélien – à Soreq, Hadera, Ashkelon, Ashdod et Palmachim – fonctionnent actuellement et deux autres sont en cours de construction. Ensemble, ces usines devraient représenter 85 à 90 % de la consommation annuelle d’eau d’Israël, ce qui constitue un changement de cap remarquable.

L’usine de dessalement de Sorek, située à environ 15 km au sud de Tel Aviv, est devenue opérationnelle en octobre 2013 avec une capacité de traitement de l’eau de mer de 624 000 m³/jour, ce qui en fait la plus grande usine de dessalement d’eau de mer au monde. L’installation de dessalement utilise le processus d’osmose inverse de l’eau de mer (SWRO) pour fournir de l’eau au système national de transport d’eau d’Israël (NWC, voir ci-dessous). La construction d’une douzaine d’autres unités de ce type est envisagée.

Israël, qui est confronté à de graves sécheresses depuis 2013, a même commencé à pomper de l’eau de mer dessalée de la Méditerranée dans le lac de Tibériade, une performance unique au monde. Alors qu’Israël était confronté à une pénurie d’eau il y a deux décennies, il exporte désormais de l’eau vers ses voisins (mais pas trop vers la Palestine). Israël fournit actuellement 100 millions de m3 à la Jordanie et répond à 20 % de ses besoins en eau.

A partir de 100 litres d’eau de mer, on peut obtenir 52 litres d’eau potable et 48 litres d’eau saumâtre. Bien que très performant et très utile, ce type de technologie reste à perfectionner car pour l’instant, il rejette en mer des saumures qui perturbent l’écosystème marin. Pour réduire cette polution et la transformer en déchets solides, il faut augmenter les traitements et donc la consommation énergétique.

D. Recyclage des eaux usées

Le pays se vante de recycler entre 80 % et 90 % de ses eaux usées pour alimenter les cultures agricoles. Ces eaux traitées, utilisées pour l’irrigation, sont appelées effluents. Leur taux d’utilisation en Israël est l’un des plus élevés au monde.

Le traitement est effectué par 87 grandes stations d’épuration des eaux usées qui fournissent plus de 660 millions de m3 par an. Cela représente environ 50 % de la demande totale en eau pour l’agriculture et environ 25 % de la demande totale en eau du pays. Israël a pour objectif de doubler la production d’effluents pour le secteur agricole d’ici 2050.

5. Projets d’aménagement

David Ben Gourion.

Pour Israël, se doter de ressources en eau dans une région désertique, par la technique, la force militaire et/ou la diplomatie, a été dès le début un impératif régalien pour répondre aux besoins d’une population en forte croissance et, aux yeux du reste du monde, une démonstration de sa supériorité.

Cette symbolique se manifeste notamment à travers la figure du père de l’État hébreu, David Ben Gourion (1886-1973), qui avait pour objectif de faire « fleurir » le désert du Néguev, au sud du pays.

Dans son ouvrage Southwards (1956), Ben Gourion décrit ainsi son ambition :

A. Aqueduc national

De 1959 à 1964, les Israéliens ont construit le National Water Carrier of Israël (NWC ou aqueduc national), à ce jour le plus grand projet hydraulique du pays.

Les premières idées sont apparues dans le livre Altneuland (1902) de Theodor Herzl, dans lequel il parle d’utiliser les sources du Jourdain à des fins d’irrigation et de canaliser l’eau de mer pour produire de l’électricité depuis la Méditerranée, près de Haïfa, jusqu’à un canal parallèle au Jourdain et à la mer Morte, en passant par les vallées de Beit She’an et du Jourdain.

« Tout l’avenir économique de la Palestine dépend de son approvisionnement en eau », déclarait en 1919 Chaïm Waizmann, le dirigeant de l’Organisation sioniste mondiale. Seulement, il préconisait d’intégrer la vallée du Litani (sud du Liban actuel) à l’Etat palestinien.

Le projet d’aqueduc national (NWC) été conçu dès 1937, bien que sa planification détaillée ait commencé après la reconnaissance d’Israël, en 1948.

Avec le NWC, l’écoulement naturel du Jourdain est empêché par la construction d’un barrage, construit au sud du lac de Tibériade. A partir de là, l’eau est déviée vers l’aqueduc national, un système long de 130 km combinant tuyaux géants, canaux ouverts, tunnels, réservoirs et stations de pompage à grande échelle. L’objectif est de transférer l’eau du lac de Tibériade vers le centre très peuplé et le sud aride, y compris le désert du Néguev.

Lors de son inauguration en 1964, 80 % de son eau était allouée à l’agriculture et 20 % à l’eau potable. En 1990, l’aqueduc national fournissait la moitié de l’eau potable en Israël. En y intégrant l’eau provenant des usines de dessalement d’eau de mer, il approvisionne aujourd’hui Tel Aviv, une ville de 3,5 millions d’habitants, Jérusalem (1 million d’habitants) et (hors période de guerre) Gaza et les territoires occupés de Cisjordanie. Depuis 1948, la superficie des terres agricoles irriguées est passée de 30 000 à 186 000 hectares. Grâce à la micro-irrigation (goutte à goutte, y compris sous la surface), la production agricole israélienne a augmenté de 26 % entre 1999 et 2009, bien que le nombre d’agriculteurs ait chuté de 23 500 à 17 000.

Cependant, depuis sa construction, le projet de détournement de l’eau du Jourdain a été une source de tension, en particulier avec la Jordanie et la Syrie, sans parler des Palestiniens, largement exclus des bénéfices économiques du projet.

La guerre de l’eau

En lançant son aqueduc national, Israël a fait cavalier seul, alors que pour le reste du monde, il était clair que ce détournement des eaux du Jourdain allait susciter de vives tensions avec ses voisins.

Dès 1953, Israël, pour préparer le travail, procède sans consulter quiconque à l’assèchement du lac Houleh, au nord du lac Tibériade, entraînant des escarmouches avec la Syrie.

En 1959, démarre le chantier de l’aqueduc national, interrompu dans un premier temps par l’arrêt des financements par les Etats-Unis, qui ne veulent pas voir monter la violence dans le contexte de la Guerre froide.

Rappelons que, suite à la crise de Suez de 1956, l’Union soviétique s’installe durablement en Syrie comme puissance protectrice des pays arabes contre la « menace israélienne ». Elle obtient, dans le cadre du déploiement de sa présence navale en Méditerranée, des facilités pour sa flotte à Lattaquié en Syrie et un traité d’assistance militaire mutuel est signé.

Cependant, Israël parvient à reprendre le chantier qu’elle poursuit discrètement. La prise d’eau dans le lac de Tibériade commence en juin 1964 dans le plus grand secret. Lorsque les pays arabes l’apprennent, la colère est grande. En novembre 1964, l’armée syrienne tire sur des patrouilles israéliennes autour de l’usine de traitement de l’aqueduc national, provoquant des contre-attaques israéliennes. En janvier 1965, l’aqueduc est la cible du premier attentat du Fatah (organisation luttant pour la libération de la Palestine) dirigé par Yasser Arafat.

Les États arabes finissent par se rendre à l’évidence qu’ils ne pourront jamais arrêter le projet par une action militaire directe. Ils changent de tactique et adoptent le Plan de diversion des sources du Jourdain, immédiatement mis en œuvre en 1965, visant à détourner les eaux en amont du Jourdain vers le fleuve Yarmouk (en Syrie). Le projet était techniquement difficile et coûteux, mais s’il avait réussi, il aurait détourné 35 % de l’eau qu’Israël comptait retirer du cours supérieur du Jourdain.

Israël considère ce détournement comme une atteinte à ses droits souverains. Les relations dégénèrent et des affrontements frontaliers s’ensuivent, les forces syriennes tirant sur les agriculteurs et les patrouilles de l’armée israélienne, et les chars et l’artillerie israéliens détruisant les chars syriens ainsi que le matériel de terrassement utilisé pour le chantier de détournement.

En juillet 1966, l’armée de l’air israélienne bombarde un parc de matériel de terrassement et abat un MiG-21 syrien. Les États arabes abandonnent leur effort de détournement, mais le conflit se poursuit à la frontière israélo-syrienne, avec notamment une attaque aérienne israélienne sur le territoire syrien en avril 1967.

Guerre de l’eau : chars israéliens sur le plateau du Golan.

Pour bien des analystes, il s’agissait là d’un prélude à la guerre des Six-Jours, en 1967, amenant Israël à occuper le plateau du Golan pour protéger son eau. La guerre des Six jours modifie profondément la donne géopolitique du bassin, puisque Israël occupe à présent, en plus de la Bande de Gaza et du Sinaï, la Cisjordanie et le Golan.

Comme le précise Hervé Amiot dans « Eau et conflits dans le bassin du Jourdain« :

En réalité, dès 1955, entre un quart et un tiers de l’eau provenait de la nappe du sud-ouest de la Cisjordanie. Aujourd’hui, les nappes de Cisjordanie fournissent 475 millions de m³ d’eau à Israël, soit 25 à 30 % de l’eau consommée dans le pays (et 50 % de son eau potable).

Deux mois après la prise des territoires occupés, Israël publie le décret militaire 92, transférant à l’armée israélienne l’autorité sur toutes les ressources en eau des territoires occupés et conférant « le pouvoir absolu de contrôler toutes les questions liées à l’eau au responsable des ressources en eau, nommé par les tribunaux israéliens ». Ce décret révoque toutes les licences de forage délivrées par le gouvernement jordanien et désigne la région du Jourdain comme zone militaire, privant ainsi les Palestiniens de tout accès à l’eau, tout en accordant à Israël un contrôle total sur les ressources en eau, utilisées pour soutenir ses projets de colonisation.

Rendre le Golan à la Syrie et reconnaître la souveraineté de l’Autorité palestinienne sur la Cisjordanie semble impossible pour Israël, au vu de la dépendance accrue de l’Etat hébreu envers les ressources hydriques de ces territoires occupés. L’exploitation de ces ressources continuera donc, malgré l’article 55 du règlement de la IVe Convention de la Haye, stipulant qu’une puissance occupante ne devient pas propriétaire des ressources en eau et ne peut les exploiter pour le besoin de ses civils.

B. Le plan Johnston

Eric Allen Johnston.

On peut penser que les Etats-Unis essayèrent très tôt d’éviter que cela ne dégénère d’une façon aussi prévisible. On tente alors de prendre en compte l’intérêt légitime pour Israël de sécuriser son accès à l’eau, clé absolue de sa survie et de son développement, tout en offrant aux pays voisins des ressources suffisantes permettant d’accueillir les millions de Palestiniens exilés chez eux suite à la Nakba.

Face au risque de conflits, le gouvernement américain propose, dès 1953, donc des années avant qu’Israël lance son plan, une médiation pour résoudre les contentieux sur le bassin du Jourdain. Cela aboutit au « Plan unifié pour la vallée du Jourdain », dit « plan Johnston », du nom d’Eric Allen Johnston, l’envoyé pour l’eau du président américain Dwight Eisenhower. Ce plan établit le caractère transfrontalier du bassin et propose un partage équitable de la ressource en accordant 52 % de l’eau à la Jordanie, 31 % à Israël, 10 % à la Syrie et 3 % au Liban.

Le plan Johnston, tout comme la Tennessee Valley Authority pendant le New Deal de FDR, était essentiellement basé sur la construction de barrages pour l’irrigation et l’hydroélectricité. L’eau était présente et correctement gérée, suffisante pour les besoins de la population de l’époque. Ses principales caractéristiques du plan étaient les suivantes:

  • un barrage sur la rivière Hasbani pour fournir de l’énergie et irriguer la région de Galilée ;
  • des barrages sur les rivières Dan et Banias pour irriguer la Galilée ;
  • le drainage des marais de Huleh ;
  • un barrage à Maqarin sur la rivière Yarmouk pour le stockage de l’eau (capacité de 175 mmc) et la production d’électricité ;
  • un petit barrage à Addassiyah sur le Yarmouk pour détourner ses eaux vers le lac de Tibériade et vers le sud le long du Ghor oriental ;
  • un petit barrage à la sortie du lac de Tibériade pour augmenter sa capacité de stockage ;
  • des canaux à écoulement par gravité le long des côtés est et ouest de la vallée du Jourdain pour irriguer la zone située entre le confluent du Yarmouk avec le Jourdain et la mer Morte ;
  • des ouvrages de contrôle et des canaux pour utiliser les débits pérennes des oueds que les canaux traversent.

Voir les détails du plan Johnston dans cet article très complet :

Validé par les comités techniques d’Israël et de la Ligue arabe, ce projet n’exige pas qu’Israël renonce à son ambition de verdir le désert du Néguev. Pourtant, sa présentation à la Knesset, en juillet 1955, n’aboutit malheureusement pas à un vote. Le comité arabe approuve le plan en septembre 1955 et le transmet au conseil de la Ligue arabe pour approbation finale. Tragiquement, cette institution refuse, elle aussi, de le ratifier le 11 octobre, à cause de son opposition à un acte impliquant une sorte de reconnaissance d’Israël… L’erreur ici fut d’isoler la question de l’eau d’un accord plus général de paix et de justice résultant d’un développement mutuel.

Après la crise du canal de Suez en 1956, les pays arabes, à l’exception de la Jordanie, durcissent considérablement leur position à l’égard d’Israël et s’opposent désormais frontalement au plan Johnston, alléguant qu’il accroît la menace représentée par ce pays en lui permettant de renforcer son économie. Ils assurent aussi que l’accroissement de ses ressources hydriques ne peut qu’augmenter le mouvement de migration des Juifs vers l’État hébreu, réduisant ainsi les possibilités de retour des réfugiés palestiniens de la guerre de 1948…

On ne refait pas l’histoire, mais on peut penser que l’adoption du plan Johnston aurait pu éviter des conflits, notamment celui de 1967 qui coûta la vie à 15 000 Égyptiens, 6000 Jordaniens, 2500 Syriens et un bon millier d’Israéliens.

C. La réponse jordanienne: le canal du Ghor

Presque au même moment où Israël achève son aqueduc national, entre 1955 et 1964, la Jordanie creuse de son côté le canal du Ghor oriental, qui débute à la confluence entre le Yarmouk et le Jourdain, dont il suit un cours parallèle jusqu’à la mer Morte, en territoire jordanien.

A l’origine, il s’agissait d’un projet plus vaste, le « Grand Yarmouk », qui prévoyait deux barrages de stockage sur cette rivière et un canal du Ghor occidental sur la rive occidentale du Jourdain. Cet autre canal ne fut jamais construit, Israël ayant pris entre-temps la Cisjordanie à la Jordanie, lors de la guerre des Six-Jours de 1967.

En fait, en déviant les eaux du Yarmouk pour alimenter son propre canal, la Jordanie se procure de l’eau pour sa capitale Amman et son agriculture, tout en asséchant, elle aussi, le fleuve Jourdain.

La région du bassin versant du Jourdain, en Jordanie, est une région d’une importance primordiale pour le pays. En effet, elle accueille 83 % de la population, les principales industries, ainsi que 80 % de l’agriculture irriguée. On y trouve également 80 % de la ressource hydrique du pays.

Or, le royaume hachémite, dont 92 % du territoire est désertique, se place parmi les pays les plus pauvres en eau. Alors qu’Israël dispose de 276 m³ d’eau douce naturelle disponible par an et par habitant, la Jordanie n’en compte que 179 m³, dont plus de la moitié provient des nappes phréatiques.

L’ONU considère d’ailleurs qu’un pays doté de moins de 500 m³ d’eau douce par an et par habitant souffre de « stress hydrique absolu ». Sans compter que depuis le début de la guerre civile syrienne, la Jordanie a accueilli près de 1,4 million de réfugiés sur son sol, en plus de ses 10 millions d’habitants.

Conçu en 1957, le canal du Ghor oriental fut réalisé entre 1959 et 1961. En 1966, la partie en amont jusqu’à Wadi Zarqa était achevée. Le canal, qui faisait alors 70 km de long, fut prolongé à trois reprises entre 1969 et 1987.

Les États-Unis, par l’intermédiaire de l’Agence américaine pour le développement international (USAID), ont financé la phase initiale du projet, après avoir obtenu du gouvernement jordanien l’assurance explicite que la Jordanie ne prélèverait pas plus d’eau du Yarmouk que ce qui lui avait été alloué dans le cadre du plan Johnston. Ils ont également participé aux phases ultérieures.

Les ouvrages hydrauliques de la région ont souvent pour éponymes de grandes figures politiques. C’est ainsi que le canal du Ghor oriental fut baptisé « King Abdallah Canal (KAC) » par Abdallah II, en l’honneur de son arrière-grand-père, le fondateur de la Jordanie. À l’occasion du traité de paix avec Israël en 1994, les deux pays se répartissent le débit du Jourdain et son voisin accepte de lui vendre de l’eau du lac de Tibériade.

D. Canal mer Morte – Méditerranée

Itinéraires possibles pour l’acheminement de l’eau :
A : Traversée du seul territoire israélien ;
B et C : traversant Israël et la Cisjordanie (le plus court, 70 km) ;
D. Traversée de Gaza et Israël ;
E. Traversée de la Jordanie uniquement (la plus longue, 200 km).

L’idée d’un canal mer Morte-Méditerranée fut initialement proposée par William Allen en 1855, dans un ouvrage appelé The Dead Sea – A new route to India (La mer Morte, une nouvelle route vers l’Inde). À l’époque, on ignorait que le niveau de la mer Morte était très en dessous de celui de la Méditerranée et Allen a proposé ce canal comme alternative au canal de Suez.

Plus tard, plusieurs ingénieurs et hommes politiques ont repris l’idée, dont Theodor Herzl dans sa nouvelle de 1902, Altneuland. Si la plupart des premiers projets partent de la rive gauche du Jourdain (Jordanie), une version prévoit également un tracé sur la rive droite (Cisjordanie), scénario abandonné après 1967 lorsque la Cisjordanie tombe aux mains d’Israël.

Après des recherches approfondies, les ingénieurs allemands Herbert Wendt et Wieland Kelm ont proposé non pas un canal navigable, mais un aqueduc composé d’une galerie en charge orientée ouest-est, reliant la Méditerranée à la mer Morte.

Tirant profit de la différence de niveau entre la mer Méditerranée et la mer Morte le système vise essentiellement à alimenter la mer Morte en eau de mer tout en produisant de l’énergie hydro-électrique. Trois tracés sont envisagés, le plus court étant celui reliant la Méditerranée à la Mer Morte (70 km) en partant d’Ashdod en Israël et traversant la Cisjordanie.

En 1975, une étude détaillée de leur projet a fait l’objet d’une première publication dans la revue spécialisée allemande Wasserwirtschaft.

Le schéma s’explique comme ceci:

  1. La prise d’eau de mer se situe à Ashdod.
  2. Un canal ouvert fait écouler l’eau par gravité sur 7 km.
  3. De là, l’eau sous pression part dans un une galerie hydraulique en charge long de 65 km;
  4. L’eau arrive dans un lac de retenue de 3 km de long créé grâce un barrage situé au bord de la descente abrupte vers la mer Morte. A cet endroit, l’eau peut éventuellement servir au refroidissement d’une centrale thermique ou nucléaire dont la chaleur peut rendre des services dans le domaine industriel ou agricole.
  5. Par un puits qui part du fond du réservoir, l’eau descend abruptement de 400 mètres.
  6. Là, il actionne trois turbines d’une puissance de 100 MWe chacune.
  7. Enfin, par une galerie d’évacuation, l’eau de mer rejoint la mer Morte.

L’ONU votre contre !

Cependant, comme le projet est élaboré exclusivement par Israël et sans aucune consultation avec ses voisins jordaniens, palestiniens et égyptiens, il se fracasse sur un mur d’opposition politique.

Bien entendu, comme pour tout projet d’infrastructure à grande échelle, de nombreux éléments doivent être adaptés, notamment les équipements touristiques, les routes, les hôtels, l’exploitation de la potasse jordanienne, les terres agricoles palestiniennes, etc.

On s’interroge également sur les tremblements de terre potentiels (très peu fréquents) et la différence de salinité de l’eau de la Méditerranée et de la mer Morte.

Le 16 décembre 1981, l’Assemblée générale des Nations unies, estimant que le projet de canal « violera le principe du droit international », adopte la résolution 36-150.

Cette résolution « prie le Conseil de sécurité d’envisager de prendre l’initiative de mesures visant à arrêter l’exécution de ce projet », et « demande à tous les Etats de ne fournir aucune assistance directe ou indirecte à la préparation ou à l’exécution de ce projet ».

E. Aqueduc mer Morte – mer Rouge

Le 17 octobre 1994, Yitzhak Rabin, alors Premier ministre israélien, et le roi Hussein de Jordanie paraphent le projet de traité de paix entre leurs deux pays à Amman, après être parvenus à un accord sur les deux derniers points en litige – la question de l’eau et la démarcation des frontières.

Yitzhak Rabin, Bill Clinton et le Roi Hussein de Jordanie.

Le 26 novembre, le traité de paix séparée israélo-jordanien est signé en grande pompe dans la vallée de l’Arava, entre la mer Rouge et la mer Morte, par les Premiers ministres des deux pays, en présence du président américain Bill Clinton, dont le pays avait contribué à faire aboutir les négociations entre Jérusalem et Amman.

Apparaissent alors, fait rare, les conditions pour que la vieille idée de relier la mer Rouge à la mer Morte, un projet rebaptisé et soutenu par Shimon Peres sous le nom de « Canal de la paix », puisse revenir sur la table.

L’ancien commissaire israélien de l’eau, le professeur Dan Zaslavsky, qui s’opposait au projet pour des raisons de coût, relatait en 2006 dans le Jerusalem Post l’obstination de Peres. Pour écouter les scientifiques, ce dernier en avait convoqué cinq. Chacun devait présenter en quelques minutes ses objections. A la fin, Peres s’est levé et a dit : « Excusez-moi. Vous ne vous souvenez pas que j’ai construit le réacteur nucléaire de Dimona ? Vous souvenez-vous que tout le monde était contre ? Et bien j’ai eu raison à la fin. Et il en sera de même avec ce projet« . Et sur ce, rapporte Zaslavsky, Peres est parti !

La mer Morte

Pendant des millénaires, la mer Morte a été remplie d’eau douce provenant du Jourdain, via le lac de Tibériade. Or, au cours des cinquante dernières années, elle a perdu 28 % de sa profondeur et un tiers de sa surface. Son niveau d’eau baisse inexorablement, à un rythme moyen de 1,45 mètre par an. Sa forte salinité (plus de 27 %, alors que la moyenne des océans et des mers est de 2 à 4 %) et son niveau de 430 mètres en dessous du niveau de la mer, ont toujours fasciné les visiteurs et procuré des bienfaits thérapeutiques. D’une longueur de 51 km sur 18 km de large, elle est partagée entre Israël, la Jordanie et la Cisjordanie.

La surexploitation des ressources en eau en amont (aqueduc national en Israël, canal du Ghor en Jordanie), ainsi que l’exploitation des mines de potasse, sont à l’origine du désert de sable qui, si rien n’est fait, continuera à remplacer la mer Morte. Si la mer Morte a besoin du Jourdain, en amont, le Jourdain a besoin du lac de Tibériade, d’où son cours inférieur prend sa source. Ces dernières années, le lac a lui aussi subi des baisses drastiques de son niveau d’eau, ce qui a déclenché un cercle vicieux entre les trois systèmes (lac de Tibériade, fleuve Jourdain et mer Morte).

L’Aqueduc

En réponse, fin 2006, la Banque mondiale et l’Agence française de développement (AFD) ont aidé Israël et la Jordanie à concevoir un projet colossal visant à relier la mer Morte à la mer Rouge via un pipeline souterrain de 180 kilomètres, entièrement construit sur le territoire jordanien. Un accord tripartite entre Israéliens, Jordaniens et Palestiniens avait été signé en décembre 2013.

Le projet mer Rouge – Mer morte combine plusieurs éléments:

  1. Prise d’eau de mer et station de pompage
    L’eau de mer est pompée à +125 m au-dessus du niveau de la mer dans la mer Rouge.
  2. Conduite sous pression
    La première partie du système d’adduction transmet l’eau de mer à l’altitude prévue. La longueur est de 5 km à partir d’Aqaba (3% de l’ensemble du tracé).
  3. Canal et tunnel – le principal système d’adduction
    L’eau de mer est acheminée vers des réservoirs de régulation et de prétraitement avec un débit nominal de 60 m3 /s. Un tunnel de 121 km avec un diamètre de 7 m et un canal de 39 km ont été conçus.
  4. Réservoirs de régulation et de prétraitement
    Plusieurs réservoirs ont été conçus à +107 m à Wadi G’mal à la marge sud-est de la mer Morte.
  5. Usine de dessalement
    Les usines de dessalement sont conçues pour être exploitées en utilisant le processus d’osmose inverse à support hydrostatique pour séparer l’eau douce de la saumure. L’usine sera située à Zafi, à 365 m au-dessous du niveau de la mer, avec une colonne d’eau de 475 m.
  6. L’eau douce
    L’ensemble produira chaque année environ 850 mmc d’eau douce à partager entre la Jordanie, Israël et la Palestine, les trois pays gérant la mer Morte. Pour le transport de l’eau vers Amman, un double pipeline de 200 km avec un diamètre de 2,75 m a été conçu avec neuf stations de pompage pour une élévation de 1500 m. Pour le transport vers Hébron, un double pipeline de 125 km avec une différence d’élévation de 1415 m a également été conçu.
  7. La saumure
    L’eau de rejet de la saumure sera acheminée de l’usine de dessalement vers la mer Morte via un canal de 7 km. 1 100 mmc par an d’eau de rejet de saumure rejoindront la mer Morte.
  8. Production d’électricité
    Lors de son écoulement, les turbines d’une ou de plusieurs centrales hydroélectriques permettent de générer environ 800 mégawatts d’électricité capables de compenser en partie l’électricité consommée par le pompage.
  9. Trois nouvelles villes seront construites : North Aqaba city dans le nord d’Aqaba, South Dead Sea City, proche de l’usine de dessalement au sud de la mer Morte et South Amman City.

Compte tenu de l’importance stratégique de l’eau pour son économie, la Jordanie envisage d’y ajouter une centrale nucléaire permettant d’alimenter en électricité à la fois l’usine de dessalement et le système de pompage.

En termes d’impact environnemental, les scientifiques craignent que le mélange de la saumure (riche en sulfate) des usines de dessalement avec l’eau de la mer Morte (riche en calcium) ne fasse blanchir cette dernière. Il serait donc nécessaire de procéder à un transfert d’eau progressif pour observer les effets du transfert d’eau dans cet écosystème particulier.

Pas de quoi stabiliser le niveau de la mer Morte, mais un début de solution pour ralentir son assèchement, comme le soulignait en 2018 Frédéric Maurel, en charge de ce projet pour l’AFD, et pour qui « il faut aussi utiliser l’eau de manière plus économe, tant dans l’agriculture que dans l’industrie de la potasse ».

Volonté politique en panne

Début du projet coté mer Rouge.

Du côté israélien, la sauvegarde de la mer Morte est une nécessité pour maintenir le tourisme balnéaire et le thermalisme. C’est aussi un levier pour garantir son contrôle hydraulique sur la Cisjordanie, Israël ne faisant pas confiance à l’Autorité palestinienne pour la gestion de l’eau. Conscientes du potentiel pacificateur de ce projet, des factions pro-paix en Israël ont besoin d’un partenaire stable dans la région. La Jordanie, pour sa part, était de loin la plus intéressée par ce projet, compte tenu de sa situation critique.

En 2021, la Jordanie a décidé de mettre un terme au projet de pipeline commun, estimant qu’il n’y avait « pas de réelle volonté de la part des Israéliens » de faire avancer ce projet qui stagnait depuis plusieurs années.

Pour faire face à ses besoins croissants, la Jordanie a décidé de construire sa propre usine de dessalement sur la mer Rouge. Le projet de dessalement Aqaba-Amman prélèvera l’eau de la mer Rouge, la dessalera et l’acheminera à 450 kilomètres au nord vers la capitale Amman et ses environs, fournissant ainsi 300 mmc d’eau par an, dont le pays a désespérément besoin. Les études sont terminées et la construction commencera en juillet 2024. La Jordanie compte faire tourner son usine de dessalement grâce à de l’énergie solaire.

La mer Morte pourrait lentement réapparaître

Disposant désormais d’énormes capacités de désalinisation, Israël a adopté le Projet national d’inversion du flux pour rendre l’eau à ses ressources naturelles, en particulier au lac de Tibériade, un trésor national, une pièce maîtresse du tourisme, de l’agriculture et, comme nous l’avons vu, de la géopolitique.

Chaque année, Israël prélève 100 mmc d’eau dans le lac de Tibériade pour les envoyer en Jordanie, et ce même pendant les années de sécheresse de 2013 à 2018.

Selon Dodi Belser, directeur de l’innovation chez le géant de l’eau Mekorot, si Israël veut augmenter la quantité d’eau qu’il envoie à ses voisins jordaniens et protéger ses réserves, il est vital de conserver le niveau d’eau du lac. C’est ainsi qu’est née l’idée de pomper de l’eau dessalée dans le lac de Tibériade, à hauteur de 120 mmc par an jusqu’en 2026.

Mécaniquement cette eau ira également alimenter le Jourdain et, par conséquent… la mer Morte.

F. Projets turcs

Depuis longtemps, la Turquie, véritable « château d’eau » dans la région, rêve d’exporter, à prix d’or, son eau vers Israël, la Palestine, Chypre et d’autres pays du Moyen-Orient.

Le plus ambitieux de ces projets était le « Peace Water Pipeline » du président Turgut Özal en 1986, un projet de 21 milliards de dollars visant à acheminer l’eau des rivières Seyhan et Ceyhan par des pipelines vers des villes de Syrie, de Jordanie et des États arabes du Golfe.

En 2000, Israël envisageait fortement d’acheter 50 millions de m3 par an pendant 20 ans à partir du fleuve Manavgat près d’Antalya, mais depuis novembre 2006, l’accord a été mis en suspens.

Projets d’aquaducs turcs.

Le projet Manavgat, finalisé techniquement à la mi-mars, fait figure de projet pilote. Le complexe sur la rivière Manavgat, qui prend sa source dans le Taurus pour se jeter en Méditerranée entre Antalya et Alanya, comprend une station de pompage, un centre de raffinage et un canal de conduite d’une dizaine de kilomètres. L’objectif est ensuite d’acheminer ces eaux douces grâce à des tankers de 250 000 tonnes vers le port israélien d’Ashkelon pour injection dans l’aqueduc national israélien.

A terme, la Jordanie pourrait également être intéressée par la manne aquatique turque. Un deuxième client en aval de son réseau permettrait à Israël de partager les coûts. Une autre solution serait d’amener l’eau par un pipeline reliant la Turquie à la Syrie et à la Jordanie, et à Israël et la Palestine si elle arrive à s’entendre avec ses partenaires. Les Palestiniens de leur côté ont cherché un pays donateur pour subventionner des importations d’eau douce par tanker.

Le projet Manavgat n’est pas le seul par lequel Ankara espère vendre son eau. En 1992, Süleyman Demirel, alors Premier ministre, affirmait un principe qui fit d’ailleurs l’effet d’une bombe :

Les pays situés en aval des deux fleuves, l’Irak et surtout la Syrie, avaient immédiatement protesté. Pour eux, les multiples barrages qu’Ankara compte construire sur les principales sources d’eau douce de la région, à des fins d’irrigation ou de production d’électricité, ne sont qu’une manière pour l’héritier de l’Empire ottoman d’asseoir son autorité sur la région.

Quelle que soit l’ambition réelle d’Ankara, le pays dispose en tout cas d’un véritable trésor, surtout au regard des ressources déclinantes des pays voisins.

Cependant, depuis novembre 2006, les partisans israéliens du dessalement s’élèvent contre le prix de l’eau turque et s’interrogent sur la sagesse de s’appuyer sur Ankara, dont le gouvernement critique les politiques israéliennes. Dessalement ou importation ? Le choix est cornélien pour Israël. Et éminemment politique, puisqu’il s’agit de savoir si l’on entend camper sur des positions basées sur l’autosuffisance ou si l’on préfère jouer la carte de la coopération régionale, ce qui revient à faire le pari de la confiance…

G. Vices cachés des accords d’Oslo

Bien que stipulant qu’« Israël reconnaît les droits sur l’eau de la Palestine », les accords d’Oslo, signés par Israël et l’Organisation de libération de la Palestine (OLP) en 1993, ont permis en réalité à Israël de continuer de contrôler les sources d’eau de la région… en attendant la résolution du conflit. Oslo II prévoyait le report des négociations sur les droits relatifs à l’eau jusqu’aux pourparlers sur le « statut permanent », le statut de Jérusalem, le droit au retour des réfugiés, les colonies illégales, les dispositions en matière de sécurité et d’autres questions. Les discussions sur le statut définitif, qui devaient se tenir cinq ans après la mise en œuvre des accords d’Oslo (en 1999, comme cela avait été prévu), n’ont toujours pas eu lieu à ce jour.

Les accords d’Oslo prévoyaient également la création d’une autorité de gestion de l’eau et leur « Déclaration de principes » soulignait la nécessité d’assurer « l’utilisation équitable des ressources en eau communes, pour application au cours de la période intérimaire [des accords d’Oslo] et après ».

Depuis des décennies, Israël perpétue le principe de distribution de l’eau qui existait avant la signature des accords d’Oslo et qui autorise les Israéliens à consommer de l’eau à volonté, tout en limitant les Palestiniens à une part prédéterminée de 15 %.

Lorsqu’il a fallu organiser la répartition de l’eau entre Israël et les Palestiniens, les accords n’ont pas tenu compte de la division de la Cisjordanie en zones A, B et C.

Israël s’est finalement vu accorder le droit de contrôler les sources d’eau, même dans les zones A et B contrôlées par l’AP. La plupart de ces sources sont déjà situées en zone C, entièrement contrôlée par Israël et qui constitue près de 61 % de la Cisjordanie. Dans les faits, Israël a donc raccordé toutes les colonies construites en Cisjordanie, à l’exception de la vallée du Jourdain, au réseau d’eau israélien. L’approvisionnement en eau des communautés israéliennes de part et d’autre de la ligne verte est géré comme un système unique dont la compagnie nationale israélienne Mekorot a la charge.

Si les accords d’Oslo autorisent Israël à pomper l’eau des zones qu’il contrôle pour alimenter les colonies de Cisjordanie occupée, ils empêchent en revanche l’AP de transférer de l’eau d’une zone à l’autre dans celles qu’elle administre en Cisjordanie. Israël a désavoué la plupart des dispositions des accords d’Oslo, mais reste attachée à celles relatives à l’eau.

Un membre de la délégation palestinienne qui a signé les accords d’Oslo, souhaitant conserver l’anonymat, affirme à la revue Middle East Eye que le manque d’expertise de la délégation à l’époque a donné lieu à la signature d’un accord qui,

Les frontières entre Gaza, les territoires occupés et Israël n’ont pas besoin d’être tracées au moyen d’une ligne, car elles sont marquées par le changement brutal de l’éclat de la couleur verte (terres irriguées).

En pratique, cela signifie que les Palestiniens de Cisjordanie occupée sont à la merci de l’occupation israélienne en ce qui concerne leur approvisionnement en eau.

Les inégalités en termes d’accès à l’eau en Cisjordanie sont criantes, comme l’a montré l’ONG israélienne B’Tselem dans un rapport intitulé Parched, publié en mai 2023.

En 2020, chaque Palestinien de Cisjordanie consommait en moyenne 82,4 litres d’eau par jour, contre 247 litres par personne en Israël et dans les colonies. Ce chiffre tombe à 26 litres par jour pour les communautés palestiniennes de Cisjordanie qui ne sont pas reliées au réseau de distribution d’eau. Seuls 36 % des Palestiniens de Cisjordanie bénéficient d’un accès à l’eau courante toute l’année, contre 100 % des Israéliens, colons inclus.

L’Autorité palestinienne souligne que l’agriculture palestinienne compte pour une grande part dans l’économie des territoires occupés (15% du PIB, 14% de la population active en 2000). En comparaison, l’agriculture israélienne, certes beaucoup plus productive, emploie 2,5% de la population active et produit 3% du PIB.

Or, les terres cultivables dont l’autonomie palestinienne, totale ou partielle, est reconnue par Israël au titre des accords d’Oslo, sont situées sur les hauteurs calcaires où l’accès à l’eau est difficile, puisqu’il est nécessaire de creuser profond pour atteindre la nappe. Ajoutons à cela qu’en Israël et dans les colonies, 47% des terres sont irriguées, contre 6 % seulement des terres palestiniennes. L’Autorité palestinienne demande actuellement des droits sur 80 % de l’aquifère des montagnes, ce qu’Israël ne peut pas concevoir.

« Mythe » du Palestinien assoiffé

Des porte-parole israéliens, comme Akiva Bigman dans son article intitulé « Le mythe du Palestinien assoiffé » (2014), ont trois réponses prêtes à sortir lorsqu’ils sont confrontés aux pénuries d’eau dans les villes palestiniennes de Cisjordanie :

Réponse : les pertes varient de 20 à 50 % aux États-Unis, ce qui est bien supérieur au taux de la Palestine pauvre.

On peut se demander où est passé l’argent. Et oui, le constat est juste, au bout du compte, pour diverses raisons techniques et des échecs de forage inattendus dans le bassin oriental de l’aquifère (le seul endroit où l’accord autorise les Palestiniens à forer), les Palestiniens ont fini par produire moins d’eau que ce que prévoyaient les accords.

Dans les chiffres, c’est vrai. Cependant, Oslo n’a pas fixé de limite à la quantité d’eau qu’Israël peut prélever, mais a limité les Palestiniens à 118 mmc provenant des puits qui existaient avant les accords, et à 70-80 mmc supplémentaires provenant de nouveaux forages. Selon l’ONG israélienne B’Tselem, en 2014, les Palestiniens ne tiraient que 14 % de l’eau de l’aquifère. C’est pourquoi l’entreprise publique israélienne Mekorot (obéissant aux directives du gouvernement) vend aux Palestiniens le double de l’eau stipulée dans l’accord d’Oslo : 64 MCM, contre 31 MCM prévus. Cela fait 64 + 31 = 95 MCM au total, un chiffre à examiner à la lumière de la consommation actuelle des Palestiniens de Cisjordanie : 239 mcm en 2020, dont… 77,1 achetés à Israël.

Un dernier détail qui en dit long : alors que les Palestiniens sont facturés au prix de l’eau potable pour leur eau agricole, les colons Juifs bénéficient de tarifs agricoles et de subventions. La justification étant que les colons juifs ont investi dans de coûteuses techniques d’irrigation…

H. Canal de navigation Ben Gourion

Fin 2023, l’idée du canal Ben Gourion fut relancée dans les médias. Ce canal relierait le golfe d’Aqaba (Eilat), dans la mer Rouge, à la mer Méditerranée et passerait par Israël pour se terminer dans ou près de la bande de Gaza (Ashkelon).

Il s’agit d’une alternative israélienne au canal de Suez, devenue d’actualité dans les années 1960 après la nationalisation de Suez par Nasser.

Les premières idées de connexion entre la mer Rouge et la Méditerranée sont apparues au milieu du XIXe siècle, à l’initiative des Britanniques qui souhaitaient relier les trois mers : Rouge, Morte et Méditerranée. La mer Morte se trouvant à 430 mètres en dessous du niveau de la mer, cette idée n’était pas réalisable, mais on pourrait l’adapter dans une autre direction. Effrayés par la nationalisation de Suez par Nasser, les Américains envisagent l’option du canal israélien, leur fidèle allié au Moyen-Orient.

En juillet 1963, H. D. Maccabee, du Lawrence Livermore National Laboratory (sous contrat avec le ministère américain de l’Energie), rédige un mémorandum explorant la possibilité de recourir à 520 explosions nucléaires souterraines pour creuser environ 250 kilomètres de canaux à travers le désert du Néguev. Classé secret jusqu’en 1993, ce document aujourd’hui déclassifié indique :

L’idée du canal Ben Gourion est réapparue au moment où ont été signés les accords dits « d’Abraham » entre Israël et les Émirats arabes unis, le Bahreïn, le Maroc et le Soudan. Le 20 octobre 2020, l’impensable s’est produit : l’entreprise publique israélienne Europe Asia Pipeline Company (EAPC) et la société émiratie MED-RED Land Bridge ont signé un accord sur l’utilisation de l’oléoduc Eilat-Ashkelon pour transporter du pétrole de la mer Rouge à la Méditerranée, donc sans passer par le canal de Suez.

Le 2 avril 2021, Israël annonça que les travaux sur le canal Ben Gourion devaient commencer en juin de la même année, mais ce ne fut pas le cas.

Les promoteurs du projet avancent que leur canal serait plus efficace que le canal de Suez car, en plus de pouvoir accueillir un plus grand nombre de navires, il permettrait la navigation simultanée dans les deux sens de grands navires grâce à la conception en deux bras. Contrairement au canal de Suez, qui s’écoule entre des rives sablonneuses, le canal israélien aurait des parois en dur ne nécessitant presque pas d’entretien. Israël prévoit de construire de petites villes, des hôtels, des restaurants et des cafés tout le long du canal.

De nombreux analystes interprètent la réoccupation israélienne actuelle de la bande de Gaza comme un événement que de nombreux politiciens israéliens attendaient pour relancer un vieux projet.

Chaque branche proposée du canal aurait une profondeur de 50 mètres et une largeur d’environ 200 mètres. Il serait 10 mètres plus profond que le canal de Suez. Des navires de 300 mètres de long et 110 mètres de large pourraient l’emprunter, ce qui correspond à la taille des plus grands navires du monde.

Un des tracés envisagés pour le futur canal Ben Gourion.

Si l’on examine plus en détail le tracé prévu, on constate que le canal commence à la limite sud du golfe d’Aqaba, à partir de la ville portuaire d’Eilat, près de la frontière israélo-palestinienne, et se prolonge à travers la vallée de l’Arabah sur environ 100 km, entre les montagnes du Néguev et les hauts plateaux jordaniens.

Il bifurque ensuite vers l’ouest avant la mer Morte, continue dans une vallée de la chaîne montagneuse du Néguev, puis tourne à nouveau vers le nord pour contourner la bande de Gaza et rejoindre la mer Méditerranée dans la région d’Ashkelon.

S’il est réalisé, avec ses 292,9 km de long, le canal Ben Gourion sera presque un tiers plus long que le canal de Suez (193,3 km). Sa construction prendrait 5 ans et impliquerait 300 000 ingénieurs et techniciens du monde entier. Le coût de la construction est estimé entre 16 et 55 milliards de dollars. Israël devrait gagner 6 milliards de dollars par an.

Celui qui contrôlera le canal, et apparemment ce ne peut être qu’Israël et ses alliés (principalement les États-Unis et la Grande-Bretagne), aura une influence énorme sur les chaînes d’approvisionnement internationales de pétrole, gaz, céréales, mais aussi sur tout le commerce mondial en général.

Israël avance qu’un tel projet mettrait en échec le pouvoir de l’Egypte, un pays fortement allié à la Russie, à la Chine et aux BRICS, et donc « une menace » pour les Occidentaux ! Avec la dépopulation de Gaza et la perspective d’un total contrôle israélien sur ce minuscule territoire, certains politiciens israéliens, y compris Netanyahou, salivent de nouveau à la perspective d’un tel projet.

Comme le précise en novembre 2023 l’analyste croate Matia Seric dans Asia Review :

I. Plan Oasis

C’est à la lumière de tous ces échecs qu’apparaît l’apport fondamental du « Plan Oasis » proposé par l’économiste américain Lyndon LaRouche (1922-2019).

En 1975, à la suite d’entretiens avec les dirigeants du parti Baas irakien et du parti travailliste israélien, Lyndon LaRouche voyait son plan Oasis comme le socle d’un développement mutuel bénéficiant à toute la région.

Au lieu d’attendre « la stabilité » et « une paix durable » qui arriveraient par magie, il s’agit alors pour LaRouche de proposer et même de lancer des projets dans l’intérêt de tous, en recrutant tous les partenaires à y participer pleinement, avant tout dans leur propre intérêt, mais en réalité dans l’intérêt de tous.

Le plan Oasis de LaRouche, défendu par l’Institut Schiller, comprend aujourd’hui :

  1. l’abandon par Israël du contrôle exclusif sur les ressources en eau, au profit d’un accord de partage équitable entre l’ensemble des pays de la région ;
  2. la reconstruction et le développement économique de la bande de Gaza, y compris la reconstruction de son aéroport international et la construction d’un grand port maritime et un arrière-pays équipé en infrastructures industrielles et agricoles ;
  3. la construction d’un réseau ferré rapide reliant l’ensemble des pays voisins;
  4. La construction de l’aqueduc mer Rouge-mer Morte ;
  5. En fonction de l’accroissement de la population et des besoins en énergie et et en eau, la construction de l’aqueduc Méditerranée-mer Morte, dans une version revue et corrigée par l’expérience de l’aqueduc mer Rouge-mer Morte ;
  6. Des unités de dessalement sous-marines et off-shore peuvent être construites en mer Rouge et en Méditerranée. Elles consomment 40 % d’énergie en moins et réduisent considérablement l’impact négatif des eaux de rejet et des saumures sur l’environnement.
  7. A terme, l’installation de petits réacteurs nucléaires (SMR) pour le dessalement de l’eau de mer et des procédés agro-industriels.

LaRouche proposait de combiner les infrastructures hydrologiques, énergétiques, agricoles et industrielles. Il donna aux complexes agro-industriels construits autour de petits réacteurs nucléaires à haute température le nom de « nuplexes », un concept avancé dans l’après-guerre par le scientifique américain Alvin Weinberg, grand patron des laboratoires d’Oak Ridge au Tennessee (ORNL) et co-inventeur de plusieurs types de réacteurs nucléaires, notamment la filière aux sels fondus utilisant le thorium comme combustible (donc sans production de plutonium militaire).

Au chapitre 8 de son autobiographie, Weinberg raconte comment l’ORNL « s’est lancé dans une grande entreprise : dessaler la mer avec de l’énergie nucléaire bon marché », avec des centrales « à usage multiple, produisant à la fois de l’eau, de l’électricité et de la chaleur industrielle ». L’affirmation que cela était possible, rapporte Weinberg, « a suscité des remous au sein de la Commission de l’énergie atomique ».

Le sénateur John F. Kennedy écoute le Dr Alvin Weinberg, directeur du laboratoire national d’Oak Ridge, dans le Tennessee. Avec l’aimable autorisation du ministère de l’énergie. (février 1959)

Finalement, c’est le président Kennedy qui s’est montré le plus enthousiaste, en s’exprimant le 25 septembre 1963 :

L’idée parvint ensuite à l’oreille du patron de la Commission de l’énergie atomique (AEC), Lewis Strauss.

Lewis transmet cette idée à Eisenhower, qui esquisse dans le magazine Life les grandes lignes de ce qui sera connu sous le nom de plan Eisenhower, basé « sur ce dont Lewis et moi avions discuté », écrit Weinberg.

Celui-ci envoie alors une équipe en Égypte, en Israël et au Liban, où elle fut chaleureusement accueillie. Cette visite permit à Tennessee d’inviter des ingénieurs israéliens et égyptiens à s’intégrer dans le projet d’étude du Moyen-Orient « qui étudiait ce que nous appelions les ‘complexes agro-industriels à propulsion nucléaire+’ ».

Le « projet Moyen-Orient » a adapté ces résultats antérieurs à la situation israélo-égyptienne. Un rapport en fut publié en plusieurs volumes, « dans lequel nous avons examiné la faisabilité de complexes nucléaires agro-industriels à construire en tant que projets nationaux dans la région d’El-Hamman, près d’Alexandrie en Égypte, et dans la région occidentale du Néguev en Israël, et en tant que projet international près de la bande de Gaza. L’implication était que les complexes seraient subventionnés par les États-Unis.

« Le plan Eisenhower-Baker n’a jamais été mis en œuvre : la volonté politique nécessaire pour soutenir la construction de grands réacteurs dans un Moyen-Orient en proie aux conflits faisait défaut… », regretta Weinberg, qui ignorait les opérations des frères Dulles…

Le plan LaRouche, comme tant d’autres propositions allant dans le même sens, a été bloqué jusqu’ici du côté israélien, américain et britannique, et nous ne savons que trop bien ce qui est arrivé à Yitzhak Rabin, assassiné après avoir signé les accords d’Oslo, à Shimon Peres évincé, et à un Yasser Arafat diabolisé. A cela il faut ajouter que LaRouche fut couvert de calomnies et traité d’antisémite.

*-*-*-*-*

Merci de partager !

The science of Oases, from the Indus Valley to Persian qanats

While the dog was domesticated as early as 15,000 years BC, we associate the first human activities aimed at managing water with the Neolithic period, which began around 10,000 BC.

It is thought to be the moment at which mankind moved from a « tribal subsistence economy of hunter-gatherers » to agriculture and animal husbandry, giving rise to villages and cities, where pottery, weaving, metallurgy and the arts would start blooming.

Key to this, the domestication of animals. The goat was domesticated around 11,000 BC, the cow around 9,000 BC, the sheep around -8,000 BC, and finally the horse around 2,200 BC in the steppes of Ukraine.

The oldest archaeological sites showing agricultural activities and irrigation techniques were discovered in the Indus Valley and the « Fertile Crescent ».

The site of Mehrgarh, in the Indus Valley, now Pakistan Balochistan, discovered in 1974 by François and Cathérine Jarrige, two French archaeologists, demonstrates important agricultural practices from 7000 BC onward.

Cotton, wheat and barley were grown, and beer was brewed. Cattle, sheep and goats were raised. But Mehrgarh was much more than that.

Vestiges de Mehrgarh (Balotchistan, Pakistan).

Contradicting the linear « developmental » schema, since we’re in the middle of the Neolithic, Mehrgarh is also home to the oldest pottery in South Asia and, above all, to the “Mehrgahr amulet”, the oldest bronze object casted with the « lost-wax » method.

Mehrgarh bronze casted amulette.

The first seals made of terracotta or bone and decorated with geometric motifs were found here.

On the technological side, tiny bow drills were used, possibly for dental treatment, as evidenced by the pierced teeth of some skeletons found on site.

At the same time, or shortly afterwards, around 6000 B.C., Mesopotamia, between the Tigris and Euphrates rivers, witnessed rapid urban development in terms of demographics, institutions, agriculture, techniques and trade.

A veritable « fertile crescent » emerged in the region stretching from Sumer to Egypt, passing through the whole of Mesopotamia and the Levant, i.e. Syria and the Jordan Valley.

Irrigation

Whether in the Indus Valley, Mesopotamia or Egypt, the earliest irrigation techniques are nothing but retaining as much water as possible when Mother Nature has the sweet kindness to offer it to mankind.

Rainwater was collected in cisterns and, as much as possible, when snowmelt or monsoon rains swell the rivers, the objective was to amplify and steer seasonal « flooding » by canals and trenches carrying the water as far away as possible to areas to be cultivated, while at the same time protecting crops.

In Egypt, for example, where the Nile rises by around 8 meters, the water brings not only moisture but also silt to the soil near the river, providing crops with the nutrients they need to grow and thus maintain the soil’s fertility.

While the Egyptians complained about the harsh labor condition of their farmers, for the Greek historian Herodotus, this was the place in the world where work was least arduous. Of Egypt he says:

In Mehrgarh, where agriculture was born from 7000 BC, the work was indeed far more demanding.

However, the drainage system around the village and the rudimentary dams to control water-logging indicate that the inhabitants understood most of the basic principles involved. The cultivation of cotton, wheat and barley, as well as the domestication of animals, show that they were also familiar with canals and irrigation systems.

Constantly refined, this know-how enabled the civilization of the Indus Valley to create great cities that impress us by their modernity, notably Harappa and Mohenjo Daro, a city of 40,000 inhabitants with a public bath in its center, not a palace.

Central bathing facility of Mohenjo Daro.

Pioneers of modern hygiene, these towns were equipped with small containers where residents could deposit their household waste.

Anticipating our « all-to-the-sewer » systems imagined in the early XVIth century by Leonardo da Vinci, for example in his plans for the new french capital of Romorantin, many towns had public water supplies as well as an ingenious sewage system.

In the port city of Lothal (now India), for example, many homes had private brick bathrooms and latrines. Wastewater was evacuated via a communal sewage system leading either to a canal in the port, or to a soaking pit outside the city walls, or to buried urns equipped with a hole for the evacuation of liquids, which were regularly emptied and cleaned.

Excavations at the Mohenjo Daro site reveal the existence of no fewer than 700 brick wells, houses equipped with bathrooms and individual and collective latrines.

Latrins of Mohenjo Daro.

Many of the city’s buildings had two floors or more. Water trickled down from cisterns installed on the roofs was channeled through closed clay pipes or open gutters that emptied into the covered sewers beneath the street.

Showers and sewer system of Mohenjo Daro.
Chadouf system to raise water to a higher level.

This hydraulic and sanitary know-how was passed on to the civilization of Crete, the mother of Greece, before being implemented on a large scale by the Romans.

It was forgotten with the collapse of the Roman Empire, only to return during the Renaissance.

Noria in Syria.

The first human contributions were aimed at maximizing water reservoirs and their gravity-flow capacity. To achieve this, it was necessary to transfer water from a lower level to higher ground and build « water towers ».

To this end, the Mesopotamian « chadouf » was widely used in Egypt, followed by the « Archimedean screw ».

Next came the « saquia » or « Persian wheel », a geared wheel driven by animal power, and finally the « noria », the best-known water-drawing machine, powered by the river itself.

Persian qanats

Before Alexander the Great, Persia’s Achaemenid Empire (6th century BC) developed the technique of underground qanats or underground aqueducts. This « draining gallery” cut into the rock or built by man, is one of the most ingenious inventions for irrigation in arid and semi-arid regions.

Whatever displeases our environmentalist friends, it’s not nature that magically produces « oases » in the desert.

It’s a scientific man who digs a drainage gallery from a water table close enough to the ground surface, or sometimes from an aquifer that flows into the desert.

On the website of ArchéOrient, archaeologist Rémy Boucharlat, Director of Emeritus Research at the French CNRS, an expert on Iran, explains:

Historically, the majority of the populations of Iran and other arid regions of Asia and North Africa depended on the water supplied by qanats; settlement areas thus corresponded to the places where their construction was possible.

The technique offers a significant advantage: as the water moves through an underground conduit, not a drop of water is lost through evaporation.

This technique spread throughout the world under various names: qanat and kareez in Iran, Syria and Egypt, kariz, kehriz in Pakistan and Afghanistan, aflaj in Oman, galeria in Spain, kahn in Balochistan, kanerjing in China, foggara in North Africa, khettara in Morocco, ngruttati in Sicily, bottini in Siena, etc.).

Improved by the Greeks and amplified by the Etruscans and the Romans, the qanats technique was carried by the Spaniards across the Atlantic to the New World, where numerous underground canals of this type still operate in Peru, Chile and western Mexico.

After Alexander the Great, Bactria, covering parts of today’s Uzbekistan, Turkmenistan and the northern part of Afghanistan, was even known as the « Oasis civilization » or the “Land of a 1000 Golden Cities”.

Iran boasts it had the highest number of qanats in the world, with approximately 50,000 qanats covering a total length of 360,000 km, about 9 times the circumference of the Earth !

Thousands of them are still operational but increasingly destabilized by erratic well digging and demographic overconcentration.

Shared responsability

In 1017, the Baghdad-based hydrologist Mohammed Al-Karaji provided a detailed description of qanat construction and maintenance techniques, as well as legal considerations about the collective management of wells and pipes.

While each qanat is designed and supervised by a mirab (dowser-hydrologist and discoverer), building a qanat is a collective task that takes several months or years for a village or group of villages. The absolute necessity of collective investment in the infrastructure and its maintenance calls for a superior notion of the common good, an indispensable complement to the notion of private property that rains and rivers are not accustomed to respecting.

In North Africa, the management of water distributed by a khettara (the local name for qanâts) is governed by traditional distribution norms known as « water rights ».

Originally, the volume of water granted per user was proportional to the work involved in building the khettara, and translated into an irrigation period during which the beneficiary could use all the khettara’s flow for his or her fields. Even today, when the khettara has not dried up, this rule of water rights still applies, and a share can be bought or sold. The size of each family’s fields to be irrigated must also be taken into account

All of this demonstrates that good cooperation between man and nature can do miracles if man decides so.

Thank you for your attention and questions welcome!

Iran, underground bathroom from Antiquity.



Merci de partager !

Persian Qanâts and the Civilization of Hidden Waters


By Karel Vereycken, July 2021.

World Day of handwashing, UNICEF.

By Karel Vereycken, July 2021.

At a time when old diseases make their return and new ones emerge worldwide, the tragic vulnerability of much of humanity poses an immense challenge.

One wonders whether to laugh or cry when international authorities trumpet without further clarification that to stop the Covid-19 pandemic, “all you have to do” is “wash your hands with soap and water”!

They forget one small detail: 3 billion people do not have facilities to wash their hands at home and 1.4 billion have no access to either water or soap!

Yet, since the dawn of time, mankind has demonstrated its capacity to mobilize its creative genius to make water available in the most remote places.

Here is a short presentation of a marvel of such human genius, the “qanâts”, an underground water conveyance system dating from the Iron Age. Probably of Egyptian origin, it was deployed on a large scale in Persia from the beginning of the 1st millennium BC.



The qanât or underground aqueduct

Typical cross-section of a qanât.

Sometimes called “horizontal drilling”, the qanât is an underground aqueduct employed to draw water from a water table and convey it by simple gravitational effect to urban settlements and farmland. The word qanât is an old Semitic word, probably Accadian, derived from a root qanat (reed) from which come canna and canal.

This “drainage gallery”, cut into the rock or built by man, is certainly one of the earliest and most ingenious inventions for irrigation in arid and semi-arid regions. The technique offers a significant advantage: by conveying water through an underground conduit, contrary to open air canals, not a single drop of water is wasted by evaporation.

Oases’ are NOT natural phenomena. All known oases are man-made. It is the qanât technique that allows man, in a given geographic configuration, to create oases in the middle of the desert, when a water table is close enough to the ground level or at a site close to the bed of a river lost in the sands of the desert.

From Mexico till China, diffusion of qanât technique.

Copied and expanded by the Romans, the qanât technique was carried across the Atlantic to the New World by the Spaniards, where many such underground canals still function in Peru and Chile. In fact, there are even Persian qanâts in western Mexico.


While today this three thousand year old technique may not be appropriate everywhere to solve current water scarcity problems in arid and semi-arid regions, it has much to inspire us as a demonstration of human genius at its best, that is, capable of doing a lot with a little.


The oases of Egypt

Egyptian man-made oasis of Dakhleh.



Today, 95% of the Egyptian population prospers on only 5% of its territory, mainly around the Nile delta. Hence, from the earliest days of Egyptian civilization, irrigation and water storage techniques for the Nile floods were developed in order to conserve this silty, nutrient-rich water for use throughout the year.

The river water was diverted and transported by canals to the fields by gravity. Since water from the Nile did not reach the oases, the Egyptians used the gushing water from the springs, which came from the large aquifer reserves of the western desert, and conveyed it to the fields by irrigation canals.

One of the fruits of this attempt to “conquer the desert” was a sustained habitation of the Dakhleh oasis throughout the Pharaonic period, explicable not only by a commercial interest on the part of the Egyptian state, but also by the new agricultural perspectives it offered.



Roman aqueducts

With its 170 km, 106 of which are underground, the Qanat of Gadara (now in Jordan) is the largest aqueduct of antiquity. It starts from a mountain water source held back by a dam (right) to supply a series of cities east of the Jordan River, in particular Gadara, near Lake Tiberias.
The Qanât Fi’raun, or aqueduct of Gadara, in Jordan.

Closer to us in time, the Qanât Fir’aun (The Watercourse of the Pharaoh) also known as the aqueduct of Gadara, a city today in Jordan. As far as we know, this 170 km long structure, depending on the geography, combines several bridge-aqueducts (of the same type as the Gard aqueduct in France) and 106 km of underground canals using the Persian qanât technique. It is not only the longest but also the most sophisticated aqueduct of antiquity, and the fruit of a years of hydraulic engineering.

In reality, the Romans, hiring persian water experts, did nothing more than terminate in the 2nd century an ancient project designed to supply water to the “Decapolis”, a collaborative group of ten cities founded by Greek and Macedonian settlers under the Seleucid king Antiochos III (223 – 187 BC), one of the successors of Alexander the Great.

These ten cities were located on the eastern border of the Roman Empire (now in Syria, Jordan and Israel), united by language, culture and political status, each with a degree of autonomy and self-rule. Its capital, Gadara, was home to more than 50,000 people and known for its cosmopolitan atmosphere, its own university attracting scholars, writers, artists, philosophers and poets. But this rich city lacked something existential : an abundance of water.

The Gadara qanat made the difference. “In the capital alone, there were thousands of fountains, watering holes and baths. Wealthy senators cooled themselves in private pools and decorated their gardens with cooling caves. The result was a record daily consumption of more than 500 liters of water per capita,” explains Matthias Schulz, author of a report on the aqueduct in Spiegel Online.

Entrance of the Gardara qanât, Jordan.



Persia

The Shahzadeh Garden in Iran, an oasis built with the age-old technique of qanats.
Maintenance



We all admire the roman aqueducts. But few of us are aware that the Romans only adapted the technique of the qanâts developed much earlier in Persia.

Indeed, it was under the Achaemenid Empire (around 559 – 330 BC.), that this technique spread slowly from Persia to the east and the west. Many qanâts can be found in North Africa (Morocco, Algeria, Libya), in the South East Asia (Iran, Oman, Iraq) and further east, in Central Asia, from Afghanistan to China (Xinjiang), via India.

The development of these “draining galleries” is attested in different regions of the world under various names: qanât and kareez in Iran, Syria and Egypt, kariz, kehriz in Pakistan and Afghanistan, aflaj in Oman, galeria in Spain, kahn in Balochistan, kanerjing in China, foggara in North Africa, khettara in Morocco, ngruttati in Sicily, bottini of Siena, etc.

Historically, the majority of the populations of Iran and other arid regions of Asia or North Africa depended on the water provided by the qanâts; their construction lifted entire areas to a higher “economic platform”, made deserts habitable and opened new land for agriculture. The map of demographic expansion followed the trail of the development of this new higher platform.


In his article « Du rythme naturel au rythme humain : vie et mort d’une technique traditionnelle, le qanât » (From natural rhythm to human rhythm: the life and death of a traditional technique, the qanât), Pierre Lombard, a researcher at the French CNRS, points out that this is not an artisanal and marginal process:

Until a few years ago, the importance of the ancestral technique of qanât was sometimes ignored in Central Asia, Iran, Syria, and even in the countries of the Arabian Peninsula. For example, the Public Authority for Water Resources of the Sultanate of Oman estimated in 1982 that all the qanâts still in operation conveyed more than 70 % of the total water used in that country and irrigated nearly 55% of the cereal lands. Oman was still one of the few states in the Middle East to maintain and sometimes even develop its qanât network; this situation, apart from its longevity, does not appear to be exceptional. If one turns to the edges of the Iranian Plateau, one can note with Wulff (1968) the obvious discrepancy between the relative aridity of this area (between 100 and 250 mm of annual precipitation) and its non-negligible agricultural production, and explain it by one of the densest networks of qanâts in the Middle East. It can also be recalled that until the construction of the Karaj dam in the early 1960s, the two million inhabitants of Tehran at that time consumed exclusively the water brought from the Elbourz foothills by several dozen regularly maintained qanâts. Finally, we can mention the case of some major oases in the Near and Middle East (Kharga in Egypt, Layla in Saudi Arabia, Al Ain in the United Arab Emirates, etc.) or in Central Asia (Turfan, in Chinese Turkestan) that owe their vast development, if not their very existence, to this remarkable technique.”

On the website ArchéOrient, the French archaeologist Rémy Boucharlat, Director of Research Emeritus at the CNRS, an Iran expert, explains:

“Whatever the origin of the water, deep or not, the technique of construction of the gallery is the same. First, the issue is to identify the presence of water, either its going underground near a river, or the presence of a water table under a foothill, which requires the science and experience of specialists. A motherwell will be dug to reach the top of the water table, indicating at which depth the [horizontal] gallery should be drilled. It’s slope must be very small, less than 2‰, so that the flow of water is calm and regular, and conduct the water gradually to the surface area, according to a gradient much lower than the slope of the foothill.

“The gallery is then dug, not starting from the mother well because it would be immediately flooded, but from downstream, from the point of arrival. The conduct is first dug in an open trench, then covered, and finally gradually sinks into the ground in a tunnel. For the evacuation of soil and ventilation during excavation, as well as to identify the direction of the gallery, shafts are dug from the surface at regular intervals, between 5 and 30 m depending on the nature of the land ».

Aireal view of persian qanât system.

In April 1973, Lyndon LaRouche’s friend, the French-Iranian professor and historian Aly Mazahéri (1914-1991), published his translation from Arab into French of “The Civilization of Hidden Waters”, a treatise on the exploitation of underground waters composed in the year 1017 by the Persian hydrologist Mohammed Al-Karaji, who lived in Baghdad. (Translated in English in 2011)

After an introduction and general considerations on geography, natural phenomena, the water cycle, the study of terrain and the instruments of the hydrologist, Al-Karaji gives a highly precise technical outline of the construction and maintenance of qanâts, as well as legal considerations respecting their management and maintenance.

Commentary on the qanâts in the treatise of Al-Karaji (11th century).

In his introduction to Al-Karji’s treatise, Professor Mazaheri emphasizes the role of the Iranian city of Merv (now in Turkmenistan). This ancient city, he says, was part of

“the long series of oases extending at the foot of the northern slope of the Iranian plateau, from the Caspian to the first foothills of the Pamirs. There, between the geological extension of the Caspian towards the East, there is a strip of arable land, more or less wide, but very fertile. Now, to exploit it, a lot of ingenuity is needed: where, for example in Merv, a big river, such as the Marghab, coming from the glaciers of the central East-Iranian massif, crosses the chain, it is necessary to establish dams, above the strip of arable land, without which, the ‘river’, divided into several dozens of arms, rushes under the sands. Elsewhere, and it is almost all along the northern slope of the chain, one can create artificial oases, by bringing the water by underground aqueducts.” (p. 44)

The construction of dams and underground aqueducts are among the most interesting legacies of their (the ancient Persians) irrigation techniques (…) Long before Islam, the Persian hydrologists had built thousands of aqueducts, allowing the creation of hundreds of villages, dozens of cities previously unknown. And very often, even where there was a river, because of the insufficiency of this one, the hydronomists had brought to light many aqueducts allowing the extension of the culture and the development of the city. Naishabur was such a city. Under the Sassanids, and later under the Caliphs, an important network of aqueducts had been created there, so that the inhabitants could afford the luxury of owning a ‘’bathing room’ in the basement, at the level of the aqueduct serving the house.”

Water room of a qanat in the basement of the Water Museum in Yadz, Iran.

Let us recall that most Persian scholars, including the famous mathematician Al-Khwarizmi, not suffering from today’s hyper-specialization that tends to curb creative thinking, excelled in mathematics, geometry, astronomy and medicine as well as in hydrology.

Mazaheri confirms that this “civilization of underground waters” spread well beyond the Iranian borders:

“Already, under the [Umayyad] Caliph Hisham (723-42), Persian hydronomists built aqueducts between Damascus and Mecca (…) Later, Mecca suffering from lack of water, Zubayda, the wife of Hâroun Al-Rachîd, sent Persian hydronomists there who endowed the city with a large underground aqueduct. And each time the latter was silted up, a new team left Persia to restore the network: such repairs took place periodically under Al-Muqtadir (908-32), under Al-Qa’im (1031-1075), under Al-Naçir (1180-1226) and, at the beginning of the fourteenth century, under the Mongol prince Emir Tchoban. We would say the same of Medina and the stages on the pilgrimage route, between Baghdad and Mecca, wherever it was possible to do so, hydronomic works were undertaken and ‘underground aqueducts’ were created.

Hydronomy is a highly demanding skill. To practice it, it is not enough to have mathematical knowledge: decadal calculus, algebra, trigonometry, etc., it is necessary to spend long hours in the galleries at the risk of dying by flooding, landslide or lack of air. It is necessary to have an ancestral instinct of ‘dowser’.”

The annual rainfall in Iran is 273 mm, which is less than one third of the world’s average annual precipitation.

The temporal and spatial distribution of precipitation is not uniform; about 75% occurs in a small area, mainly on the southern coast of the Caspian Sea, while the rest of the country does not receive sufficient rainfall. On the temporal scale, only 25% of the precipitation occurs during the plant growing season.

7,7 x the circonférence of the Earth

Still in use today in Iran, qanâts currently supply about 7.6 billion m3 of water, close to 15% of the country’s total water needs.

Considering that the average length of each qanât is 6 km in most parts of the country, the total length of the 30,000 qanât systems (potentially exploitable today) is about 310,800 km, which is about 7.7 times the circumference of the Earth or 6/7th of the Earth-Moon distance!

This shows the enormous amount of work and energy applied to build the qanâts. In fact, while more than 38,000 qanâts were in operation in Iran till 1966, its number dropped to 20,000 in 1998 and is currently estimated at 18,000. According to the Iranian daily Tehran Times, historically, over 120,000 qanat sites are documented.

Moreover, while in 1965, 30-50% of Iran’s total water needs were met by qanats, this figure has dropped to 15% in recent decades.

According to the Face Iran website:

The water flow of qanâts is estimated between 500 and 750 cubic meters per second. As land aridity tends to vary according to the abundance of rains in each region, this quantity of water is used as a more or less important supplement. This makes it possible to use good land that would otherwise be barren. The importance of the impact on the desert can be summarized in one figure: about 3 million hectares. In seven centuries of hard work, the Dutch conquered 1.5 million hectares from the marshes or the sea. In three millennia, the Iranians have conquered twice as much on the desert.

Indeed, to each new qanât corresponded a new village, new lands. From where a new human group absorbed the demographic surplus. Little by little the Iranian landscape was constituted. At the end of the qanat, is the house of the chief, often with one floor. It is surrounded by the villagers’ houses, animal shelters, gardens and market gardens.

The distribution of land and the days of irrigation of the plots were regulated by the chief of the villages. Thus, a qanat imposed a solidarity between the inhabitants.”

If each qanât is “invented” and supervised by a mirab (dowser-hydrologist and discoverer), the realization of a qanât is a collective task that requires several months or years, even for medium-sized qanâts, not to mention works of record dimensions (a 300 m deep mother-well, a 70 km long gallery classified in 2016 as a World Heritage Site by UNESCO, in northeast Iran).

Each undertaking is carried out by a village or a group of villages. The absolute necessity of a collective investment in the infrastructure and its maintenance requires a higher notion of the common good, an indispensable complement to the notion of private property that rains and rivers do not take in account.

In the Maghreb, the management of water distributed by a khettara (the local name for qanâts) follows traditional distribution norms called “water rights”. Originally, the volume of water granted per user was proportional to the work contributed to build the khettara, translated into an irrigation time during which the beneficiary had access to the entire flow of the khettara for his fields. Even today, when the khettara has not dried up, this rule of the right to water persists and a share can be sold or bought. Because it is also necessary to take into account the surface area of the fields to be irrigated by each family.

The causes of the decline of the qanâts are numerous. Without endorsing the catastrophist theses of an anti-human ecology, it must be noted that in the face of the increasing urban population, the random construction of dams and the digging of deep wells equipped with electric pumps have disturbed and often depleted the aquifers and water tables.

A neoliberal ideology, falsely described as “modern”, also prefers the individualistic “manager” of a well to a collective management organized among neighbors and villages. A passive State authority has done the rest. In the absence of more thoughtful reflection on its future, the age-old system of qanâts is on the verge of extinction as a result.

In the meantime, the Iranian population has grown from 40 to over 82 million in 40 years. Instead of living off oil, the country is seeking to prosper through agriculture and industry. As a result, the need for water has increased substantially. To cope with rising demands, Iran is desalinating sea water at great cost. Its civilian nuclear program will be the key factor to provide water at a reasonable cost.

Beyond political and religious divisions, closer cooperation between all the countries in the region (Turkey, Syria, Iraq, Israel, Egypt, Jordan, etc.) with a perspective to improve, develop, manage and share water resources, will be beneficial to each and all.

Presented as an “Oasis Plan” and promoted for decades by the American thinker and economist Lyndon LaRouche, such a policy, translating word into action, is the only basis of a true peace policy.

Bibliography :

  • Remy Boucharlat, The falaj or qanât, a polycentric and multi-period invention, ArcheOrient – Le Blog, September 2015 ;
  • Pierre Lombard, Du rythme naturel au rythme humain : vie et mort d’une technique traditionnelle, le qanat, Persée, 1991 ;
  • Aly Mazaheri, La civilisation des eaux cachées, un traité de l’exploitation des eaux souterraines composé en 1017 par l’hydrologue perse Mohammed Al-Karaji, Persée, 1973 ;
  • Hassan Ahmadi, Arash Malekian, Aliakbar Nazari Samani, The Qanat: A Living History in Iran, January 2010;
  • Evelyne Ferron, Egyptians, Persians and Romans: the interests and stakes of the development of Egyptian oasis environments.

NOTE:

[1] The ten cities forming the Decapolis were: 1) Damascus in Syria, much further north, sometimes considered an honorary member of the Decapolis; 2) Philadelphia (Amman in Jordan); 3) Rhaphana (Capitolias, Bayt Ras in Jordan); 4) Scythopolis (Baysan or Beit-Shean in Israel), which is said to be its capital; It is the only city west of the Jordan River; 5) Gadara (Umm Qeis in Jordan); 6) Hippos (Hippus or Sussita, in Israel); 7) Dion (Tell al-Ashari in Syria); 8) Pella (Tabaqat Fahil in Jordan); 9) Gerasa (Jerash in Jordan) and 10) Canatha (Qanawat in Syria)

Merci de partager !

Qanâts perses et Civilisation des eaux cachées

aqueduc souterrain
Journée internationale du lavage des mains, organisée par UNICEF.

Par Karel Vereycken, juillet 2021.

A une époque où d’anciennes maladies reviennent et où de nouvelles émergent à l’échelle mondiale, la vulnérabilité tragique d’une grande partie de l’humanité pose un immense défi.

On se demande s’il faut rire ou pleurer quand les autorités internationales claironnent sans plus de précisions que pour enrayer la pandémie de Covid-19, il « suffit » de bien se laver les mains à l’eau et au savon !

Ils oublient un petit détail : 3 milliards de personnes ne disposent pas d’installations pour se laver les mains chez elles et 1,4 milliard n’ont aucun accès, ni à l’eau, ni au savon !

Pourtant, depuis la nuit des temps, l’homme a su rendre l’eau disponible dans les endroits les plus reculés.

Voici un aperçu d’une merveille du génie humain, les qanâts perses, une technique de canalisations souterraines datant de l’âge de fer. Sans doute d’origine égyptienne, elle fut mise en œuvre à grande échelle en Perse à partir du début du 1er millénaire avant notre ère.

Le qanât ou aqueduc souterrain

Parfois appelé « forage horizontal », le qanât est un aqueduc souterrain servant à puiser dans une nappe phréatique pour l’acheminer par simple effet de gravitation vers des lieux d’habitation et de cultures. Certains qanâts comprennent des aires de repos pour les travailleurs, des réservoirs d’eau, des salles d’eau souterraines et même des moulins à eau. Le mot qanâts, vieux mot sémitique, probablement accadien, dérivé d’une racine qanat (roseau) d’où viennent canna et canal.

Cette « galerie drainante », taillée dans la roche ou construite par l’homme, est certainement l’une des inventions les plus ingénieuses pour l’irrigation dans les régions arides et semi-arides. La technique offre un avantage non négligeable : se déplaçant dans un conduit souterrain, pas une goutte d’eau ne se perd par évaporation.

Diffusion de la technique des qanâts perses dans le monde.

C’est cette technique qui permet à l’homme de créer des oasis en plein désert, lorsqu’une nappe phréatique est suffisamment proche de la surface du sol ou parfois sur le lit d’une rivière venant se perdre dans le désert.

Copiée et utilisée par les Romains, la technique des qanâts a été transportée par les Espagnols de l’autre côté de l’Atlantique vers le nouveau monde, où de nombreux canaux souterrains de ce type fonctionnent encore au Pérou et au Chili. En fait, il existe même des qanâts perses dans l’ouest du Mexique.

Si aujourd’hui, ce système triplement millénaire n’est pas forcément applicable partout pour résoudre les problèmes de pénurie d’eau dans les régions arides et semi-arides, il a de quoi nous inspirer en tant que démonstration du génie humain dans ce qu’il a de meilleur, c’est-à-dire capable de faire beaucoup avec peu.

Les oasis d’Égypte

Le génie de l’homme à l’œuvre : l’oasis de Dakhleh, en plein désert égyptien, alimenté par des qanâts.

Dès les balbutiements de la civilisation égyptienne, des techniques d’irrigation et de stockage de l’eau des crues du Nil furent développées afin de conserver cette eau limoneuse, riche en nutriments, pour l’utiliser tout au long de l’année. L’eau du fleuve était déviée et transportée par canaux vers les champs grâce à la gravité. Puisque l’eau du Nil ne parvenait pas dans les oasis, les Égyptiens utilisèrent l’eau jaillissante des sources, provenant des grandes réserves aquifères du désert de l’Ouest, et acheminée vers les terres par des canaux d’irrigation.

Le résultat de cette tentative de conquête du désert fut une habitation soutenue de l’oasis de Dakhleh tout au long de l’époque pharaonique, explicable non seulement par un intérêt commercial de la part de l’État égyptien, mais aussi par de nouvelles possibilités agricoles.

Aqueducs Romains

Avec ses 170 km, dont 106 en souterrain, le qanât de Gadara (actuellement en Jordanie) est le plus grand aqueduc de l’Antiquité. Il part d’une source d’eau de montagne retenue par un barrage (à droite) pour alimenter une série de villes à l’Est du Jourdain, en particulier Gadara, proche du lac Tibériade.
Le Qanât Fi’raun, ou aqueduc de Gadara, en Jordanie.

Plus proche de nous, le Qanât Fir’aun (Le cours d’eau du Pharaon) également connu comme l’aqueduc de Gadara, aujourd’hui en Jordanie.

En l’état actuel de nos connaissances, cet édifice de 170 kilomètres, qui alterne, en fonction de la géographie, plusieurs pont-aqueducs (du même type que celui du Gard en France) et 106 km de canaux souterrains utilisant la technique des qanâts perses.

Il est aussi le plus long aqueduc de l’Antiquité, et surtout le plus complexe et le fruit d’un long travail d’ingénierie hydraulique.

En réalité, les Romains ont achevé au IIe siècle un vieux projet visant à approvisionner en eau la Décapole, un ensemble de dix villes fondées par des colons grecs et macédoniens sous le roi séleucide Antiochos III (223 – 187 av. JC), un des successeurs d’Alexandre le Grand.

La Décapole était un groupe de dix villes [*] situées à la frontière orientale de l’Empire romain (aujourd’hui en Syrie, en Jordanie et en Israël), regroupées en raison de leur langue, de leur culture, de leur emplacement et de leur statut politique, chacune possédant un certain degré d’autonomie et d’autogestion.

Sa capitale, Gadara, abritait plus de 50 000 personnes et se distinguait par son atmosphère cosmopolite, sa propre université avec des érudits, attirant écrivains, artistes, philosophes et poètes.

Mais il manquait quelque chose à cette ville riche : une abondance d’eau.

Entrée du qanât à Gadara, Jordanie.

Le qanât de Gadara a changé tout cela. « Rien que dans la capitale, il y avait des milliers de fontaines, d’abreuvoirs et de thermes. Les riches sénateurs se rafraîchissaient dans des piscines privées et décoraient leurs jardins de grottes rafraîchissantes. Il en résultait une consommation quotidienne record de plus de 500 litres d’eau par habitant », explique Matthias Schulz, auteur d’un reportage sur l’aqueduc dans Spiegel Online.

La Perse

Le Jardin de Shahzadeh en Iran, un oasis construit grâce à la technique millénaire des qanâts.

Travaux de maintenance d’un qanât.

La technique des qanâts, reprise et mise en œuvre par les Romains, leur était parvenue de Perse.

En effet, c’est sous L’Empire des Achéménides (vers 559 – 330 av. JC.), que cette technique se serait répandue lentement depuis la Perse vers l’est et l’ouest.

On trouve ainsi de nombreux qanâts en Afrique du Nord (Maroc, Algérie, Libye), au Moyen-Orient (Iran, Oman, Irak) et plus à l’est, en Asie centrale, de l’Afghanistan jusqu’en Chine (Xinjiang) en passant par l’Inde.

Ces galeries drainantes ou galeries de captage émergentes sont attestées dans différentes régions du monde sous des noms divers : qanât et kareez en Iran, Syrie et Égypte, kariz, kehriz au Pakistan et en Afghanistan, aflaj à Oman, galeria en Espagne, kahn au Baloutchistan, kanerjing en Chine, foggara en Afrique du Nord, khettara au Maroc, ngruttati en Sicile, bottini à Sienne, etc.).

Historiquement, la majorité des populations d’Iran et d’autres régions arides d’Asie ou d’Afrique du Nord dépendait de l’eau fournie par les qanâts ; les espaces de peuplement correspondaient ainsi aux lieux où leur construction était possible.

Dans son article « Du rythme naturel au rythme humain : vie et mort d’une technique traditionnelle, le qanât », Pierre Lombard, chercheur au CNRS, relève qu’il ne s’agit pas d’un procédé artisanal et marginal :

La technique ancestrale du qanât revêtait il y a quelques années encore une importance parfois méconnue en Asie centrale, en Iran, en Syrie, ou encore dans les pays de la péninsule arabique. A titre d’exemple, la Public Authority for Water Ressources du Sultanat d’Oman estimait en 1982 que l’ensemble des qanâts encore en activité convoyaient plus de 70 % du total de l’eau utilisée dans ce pays et irriguaient près de 55 % des terres à céréales. L’Oman demeurait certes alors l’un des rares Etats du Moyen-Orient à entretenir et parfois même développer son réseau de qanâts ; cette situation, hormis sa longévité, n’apparaît pourtant en rien exceptionnelle. Si l’on se tourne vers les bordures du Plateau iranien, on peut constater avec Wulff (1968) le décalage évident entre la relative aridité de cette zone (entre 100 et 250 mm de précipitations annuelles) et ses productions agricoles non négligeables, et l’expliquer par l’un des plus denses réseaux de qanâts du Moyen-Orient. On peut aussi rappeler que jusqu’à la construction du barrage du Karaj au début des années 60, les deux millions d’habitants que comptait alors Téhéran consommaient exclusivement l’eau apportée depuis le piémont de l’Elbourz par plusieurs dizaines de qanâts régulièrement entretenus. On peut enfin évoquer le cas de quelques oasis majeures du Proche et Moyen-Orient (Kharga en Egypte, Layla en Arabie saoudite, Al Ain aux Émirats arabes unis, etc.) ou d’Asie centrale (Turfan, dans le Turkestan chinois,) qui doivent leur vaste développement, sinon leur existence même à cette technique remarquable.

Sur le site ArchéOrient, l’archéologue Rémy Boucharlat, directeur de Recherche émérite au CNRS, spécialiste de l’Iran, explique :

Quelle que soit l’origine de l’eau, profonde ou non, la technique de construction de la galerie est la même. Il s’agit d’abord de repérer la présence de l’eau, soit son sous-écoulement à proximité d’un cours d’eau, soit la présence d’une nappe plus profonde sur un piémont, ce qui nécessite la science et l’expérience de spécialistes. Un puits-mère atteint la partie supérieure de cette couche ou nappe d’eau, qui indique à quelle profondeur devra être creusée la galerie. La pente de celle-ci doit être très faible, moins de 2‰, afin que l’écoulement de l’eau soit calme et régulier, et pour conduire peu à peu l’eau vers la surface, selon un gradient bien inférieur à la pente du piémont.

La galerie est ensuite creusée, non pas depuis le puits-mère car elle serait immédiatement inondée, mais depuis l’aval, à partir du point d’arrivée. Le conduit est d’abord creusé en tranchée ouverte, puis couverte, pour enfin s’enfoncer peu à peu dans le sol en tunnel. Pour l’évacuation des terres et la ventilation pendant le creusement, ainsi que pour repérer la direction de la galerie, des puits sont creusés depuis la surface à intervalles réguliers, entre 5 et 30 m selon la nature du terrain.

Qanâts iraniens, vue du ciel sur les puits d’aération et de service.

En avril 1973, notre ami, le professeur et historien franco-iranien Aly Mazahéri (1914-1991), publia sa traduction de La civilisation des eaux cachées, un traité de l’exploitation des eaux souterraines composé en 1017 par l’hydrologue perse Mohammed Al-Karaji, qui vécut à Bagdad.

Après une introduction et des considérations générales sur la géographie du globe, les phénomènes naturels, le cycle de l’eau, l’étude des terrains et les instruments de l’hydronome, Al-Karaji donne une description technique de la construction et de l’entretien des qanâts, ainsi que des considérations juridiques sur la gestion des puits et des conduites.

Dans son introduction au traité d’Al-Karji, le professeur Aly Mazahéri souligne le rôle de la ville iranienne de Merv (aujourd’hui au Turkménistan).

Cette ville antique faisait partie de

la longue série d’oasis s’étendant au pied du versant nord du plateau iranien, de la Caspienne aux premiers contreforts des Pamirs. Là, entre l’extension géologique de la Caspienne vers l’Est, se trouve une bande de terre arable, plus ou moins large, mais fort riche. Or, pour l’exploiter, il faut énormément d’ingéniosité : là où, par exemple à Merv, un grand cours d’eau, tel le Marghab, issu des glaciers du massif central est-iranien, franchit la chaîne, il faut établir des barrages, au-dessus de la bande de terre arable, sans quoi, le ’fleuve’ divisé en plusieurs dizaines de bras se précipite sous les sables. Ailleurs, et c’est presque tout au long du versant nord de la chaîne, on peut créer des oasis artificielles, en amenant l’eau par des aqueducs souterrains. (p. 44)

Commentaire sur les qanâts dans le traité d’Al-Karaji (XIe siècle).

La construction de barrages et celle d’aqueducs souterrains sont parmi les legs les plus intéressants de leurs techniques d’irrigation (…) Bien avant l’islam, les hydronomes perses avaient construit des milliers d’aqueducs, permettant la création de centaines de villages, de dizaines de villes auparavant inconnues. Et très souvent, là même où il y avait une rivière, en raison de l’insuffisance de celle-ci, les hydronomes avaient mis au jour nombre d’aqueducs permettant l’extension de la culture et le développement de la ville. Naishabur était une ville de ce genre. Sous les Sassanides, puis sous les califes, un important réseau d’aqueducs y avait été créé, de sorte que les habitants pouvaient s’offrir le luxe de posséder chacun une ‘salle d’eau’ au sous-sol, au niveau de l’aqueduc desservant la maison.

Salle d’eau d’un qanât au sous-sol du Musée de l’eau à Yadz, Iran.

Rappelons que la plupart des savants perses, notamment le fameux mathématicien Al-Khwarizmi, ne souffrant pas de l’hyper spécialisation qui tend à brider la pensée créatrice, excellaient aussi bien en mathématique, en géométrie, en astronomie et en médecine qu’en hydrologie.

Mazaheri confirme que cette « civilisation des eaux souterraines » s’est répandue bien au-delà des frontières iraniennes :

Déjà, sous le calife Hisham (723-42), des hydronomes persans construisirent entre Damas et La Mecque des aqueducs (…) Plus tard, La Mecque souffrant du manque d’eau, Zubayda, l’épouse de Hâroun Al-Rachîd, y envoya des hydronomes persans qui dotèrent la ville d’un grand aqueduc souterrain. Et chaque fois que celui-ci venait à être ensablé, une nouvelle équipe partait de Perse pour y restaurer le réseau : de telles réfections eurent lieu périodiquement sous Al-Muqtadir (908-32), sous Al-Qa’im (1031-1075), sous Al-Naçir (1180-1226) et, au début du XIVe siècle, sous le prince mongol l’émir Tchoban. Nous dirions autant de Médine et des étapes sur la route du pèlerinage, entre Bagdad et La Mecque, partout où il était possible de le faire, des travaux hydronomiques furent entrepris et des ‘aqueducs souterrains’ furent créés.

« L’hydronomie est un art pénible. Il ne suffisait pas, pour l’exercer, de posséder des connaissances mathématiques : calcul décadique, algèbre, trigonométrie, etc., il fallait passer de longues heures dans les galeries au risque d’y mourir par inondation, éboulement ou manque d’air. Il fallait posséder un instinct ancestral de ‘sourcier’. 

Les précipitations annuelles en Iran sont de 273 mm, soit moins d’un tiers des précipitations annuelles moyennes mondiales.

La distribution temporelle et spatiale des précipitations n’est pas uniforme ; environ 75 % concernent une petite zone, principalement sur la côte sud de la mer Caspienne, alors que le reste du pays ne reçoit pas de précipitations suffisantes. À l’échelle temporelle, seulement 25 % des précipitations ont lieu pendant la saison de croissance des plantes.

Les qanâts iraniens : 7,7 x la circonférence de la Terre

Toujours utilisés aujourd’hui, les qanâts sont construits comme une série de tunnels souterrains et de puits qui amènent les eaux souterraines à la surface. Aujourd’hui, en Iran, ils fournissent environ 7,6 milliards de m3, soit 15 % du total des besoins en eau du pays.

Si l’on considère que la longueur moyenne de chaque qanât est de 6 km dans la plupart des régions du pays, la longueur totale des 30 000 systèmes de qanât (potentiellement exploitables aujourd’hui) est d’environ 310 800 km, soit environ 7,7 fois la circonférence de la Terre ou 6/7 de la distance Terre-Lune !

Cela montre l’énorme travail et l’énergie utilisés pour la construction des qanâts. En fait, alors que plus de 38 000 qanats étaient en activité en Iran jusqu’en 1966, ce nombre est tombé à 20 000 en 1998 et est actuellement estimé à 18 000. Selon le quotidien iranien Tehran Times, plus de 120 000 sites de qanâts sont documentés.

De plus, alors qu’en 1965, 30 à 50 % des besoins totaux en eau de l’Iran étaient couverts par les qanâts, ce chiffre est tombé à 15 % au cours des dernières décennies.

Comme le précise le site Face Iran :

Le débit des qanâts est estimé entre 500 et 750 mètres-cubes seconde. Comme l’aridité n’est pas totale, cette quantité sert d’appoint plus ou moins important suivant l’abondance des pluies de chaque région. Ceci permet d’utiliser de bonnes terres qui seraient autrement stériles. L’importance de l’emiètement ainsi réalisé sur le désert se résume en un chiffre : environ 3 millions d’hectares. En sept siècles de travail acharné, les Hollandais conquirent sur les marais ou sur la mer 1,5 million d’hectares. En trois millénaires, les Iraniens ont conquis le double sur le désert.

En effet, à chaque nouveau qanât correspondait un nouveau village, de nouvelles terres. D’où un nouveau groupe humain absorbait les excédents démographiques. Peu à peu se constituait le paysage iranien. Au débouché du qanât, se trouve la maison du chef, souvent à un étage. Elle est entouré des maisons des villageois, des abris des animaux, de jardins et de cultures maraichères.

La distribution des terrains et les jours d’irrigation des parcelles étaient réglés par le chef des villages. Ainsi un qanât imposait une solidarité entre les habitants.

Si chaque qanât est conçu et surveillé par un mirab (sourcier-hydrologue et découvreur), réaliser un qanât est un travail collectif qui demande plusieurs mois ou années, même pour les qanâts de dimensions moyennes, sans même parler des ouvrages aux dimensions records (puits-mère de 300 m de profondeur, galerie longue de 70 km classée en 2016 au Patrimoine mondial de l’humanité par l’UNESCO, dans le nord-est de l’Iran).

L’entreprise est réalisée par un village ou un groupe de villages. La nécessité absolue d’un investissement collectif dans l’infrastructure et sa maintenance nécessite une notion supérieure du bien commun, complément indispensable à la notion de propriété privée que les pluies et les fleuves n’ont guère l’habitude de respecter.

Au Maghreb, la gestion des eaux distribuées par une khettara (nom local des qanâts) obéit à des normes traditionnelles de répartition appelées « droit d’eau ». À l’origine, le volume d’eau octroyé par usager était proportionnel aux travaux fournis lors de l’édification de la khettara et se traduisait en un temps d’irrigation durant lequel le bénéficiaire disposait de l’ensemble du débit de la khettara pour ses champs. Encore aujourd’hui, lorsque la khettara n’est pas tarie, cette règle du droit d’eau perdure et une part peut se vendre ou s’acheter. Car il faut aussi prendre en compte la superficie des champs à irriguer de chaque famille.

Le déclin

Les causes du déclin des qanâts sont multiples. Sans endosser les thèses catastrophistes d’une écologie anti-humaine, force est de constater que face à l’augmentation de la population urbaine, la construction irréfléchie de barrages et le creusement de puits profonds équipés de pompes électriques, ont perturbé et souvent épuisé les nappes phréatiques.

Une idéologie néolibérale, faussement qualifiée de « moderne », préfère également le « manager » d’un puits à une gestion collective entre voisins et villages. Un Etat absent a fait le reste. Faute d’une réflexion plus réfléchie sur son avenir, le système millénaire des qanâts est en voie de disparition.

Entretemps, la population iranienne est passé de 40 à plus de 82 millions d’habitants en 40 ans. Au lieu de vivre de la rente pétrolière, le pays cherche à prospérer grâce à son agriculture et son industrie. Du coup, les besoins en eau explosent. Pour y faire face, l’Iran procède au dessalement de l’eau de mer. Son programme nucléaire civil sera la clé pour en réduire le coût.

Au-delà des divisions politiques et religieuses, une coopération resserrée entre tous les pays de la région (Turquie, Syrie, Irak, Israël, Egypte, Jordanie, etc.) en vue de l’amélioration, du partage et de la gestion des ressources hydriques, sera forcément bénéfique à chacun.

Présentée comme un « Plan Oasis » et promue depuis des décennies par le penseur et économiste américain Lyndon LaRouche, une telle politique, bien mieux que milles traités et autant de paroles, est la base même d’une véritable politique de paix.

Sites de qanâts en Syrie

Bibliographie :


[*] Les dix villes formant la Décapole étaient : 1) Damas en Syrie, bien plus au nord, parfois considérée comme un membre honorifique de la Décapole ; 2) Philadelphia (Amman en Jordanie) ; 3) Rhaphana (Capitolias, Bayt Ras en Jordanie) ; 4) Scythopolis (Baysan ou Beït-Shéan en Israël), qui en serait la capitale ; c’est la seule ville à se trouver à l’ouest du Jourdain ; 5) Gadara (Umm Qeis en Jordanie) ; 6) Hippos (Hippus ou Sussita, en Israël) ; 7) Dion (Tell al-Ashari en Syrie) ; 8) Pella (Tabaqat Fahil en Jordanie) ; 9) Gerasa (Jerash en Jordanie) et 10) Canatha (Qanawat en Syrie).

Merci de partager !